NSERC HydroNet:

Mesoscale modelling of the productive capacity of fish habitats in lakes and reservoirs.

Accounting of No Net Loss:

Productive capacity_{after}

Productive capacity_{before}

Impact of a perturbation*

* Should be zero to achieve 'no net loss'

Accounting of NNL:

- 1) Estimate the productive capacity of the unregulated river before (SNG)
- 2) Predict the productive capacity of the unregulated and regulated river after (SNG)
- 3) Estimate the productive capacity of a lake before (CRD)
- 4) Predict the productive capacity of a reservoir after (CRD)

Accounting of NNL:

- 1) Estimate the productive capacity of the unregulated river before (SNG)
- 2) Predict the productive capacity of the unregulated and regulated river after (SNG)
- 3) Estimate the productive capacity of a lake before (CRD)
- 4) Predict the productive capacity of a reservoir after (CRD)

Postulates:

- •Ecosystems are mosaics of tiles of habitats (mesohabitat)
- •Different types of mesohabitats may play different roles for different fish species and size-classes
- •Different types of mesohabitats may play different roles at different times (day vs night; summer vs winter)

Consequences:

•Estimation of the productive capacity of a lake or a reservoir may require the partitioning of ecosystems in a mosaic of mesohabitats

•Prediction of the productive capacity of reservoirs may require a knowledge of;

-which type of mesohabitat is lost or gained?
-how much of any given type of mesohabitat is lost or gained?
-what is the ecological role of these mesohabitats?

•Implementation of the principle of «No Net Loss» may require the use of mesoscale habitat models

Partition lakes/reservoirs in a series of mesohabitats
 Assign an index of productive capacity to each mesohabitat

3) Integrate indices of productive capacity over the complete ecosystem

Mesoscale modelling of the productive capacity of fish habitats in lakes and reservoirs

General objective:

Contribute to the development of knowledge and tools to improve our ability to estimate/ predict the productive capacity of fish habitats in lakes and reservoirs. **Specific objectives (What?):**

1) Augment our understanding of the role played by different types of mesohabitats for a complete suite of fish species and size-classes;

2) Gain knowledge of the daily variation of habitat use in different types of mesohabitats;

3) Compare the relative performance of different sampling gears at achieving 1) and 2).

When?

- •2010 (Site visits/calibration; August to September)
- •2011-2013 (Sampling; June-August)
- •2014-15 Data analysis and writing up of reports

How?

How?

How?

•50 = 10 replicates per combinations of method and 5 habitat types

CPUE n/100 m² -= f (local, lateral, contextual) kg/100 m²

Local : depth, substrate composition, macrophyte cover, woody debris Lateral : riparian vegetation, presence/absence cottages Contextual : distance to tributary, distance to temperature anomalies, fetch, distance to deep sections of the lake

	Fyke net Sp/Sc 1,2,3,475	Seine Sp/Sc 1,2,3,4…75	Gill net Sp/Sc 1,2,3,4…75	Local Env var a,b,c,d,	Lateral Env var m,n,o,p	Contextual Env var w,x,y,z
S1 S2 S3 						
 S50						

Two challenges:

-The number of combinations of species and size classes

-The number of zeros per fish matrix

Criteria to form groups of fish species and size classes («guilds»)

-morphological traits
-anatomic traits
-life-history traits
-size
-diet

Contributions:

- •Compare the relative performance of different sampling gears at estimating fish habitat use (CPUE, n/100 m², kg/100 m²)
- •Describe patterns of habitat use for species and size classes day and night
- •Identify the sampling gear that allows to develop models having the highest explanatory power
- •Assess the relative effects of local, lateral, contextual environmental conditions on fish habitat use
- •Define criteria to form guilds that will facilitate the development of habitat use models
- •Improve our ability to estimate and predict metrics of productive capacity (CPUE, n/100 m², kg/100 m²)

Potential improvements:

-3D map of flow velocity fields

-3D map of water temperature

