

Water Use Planning in BC Case Study: Campbell River Watershed

Dan Ohlson, M.Sc., P.Eng., MCIP

Compass Resource Management Ltd. 200 - 1260 Hamilton St. Vancouver, B.C. V6B 2S8 Canada

Phone: 604-641-2875 Fax: 604-641-2878 www.compassrm.com

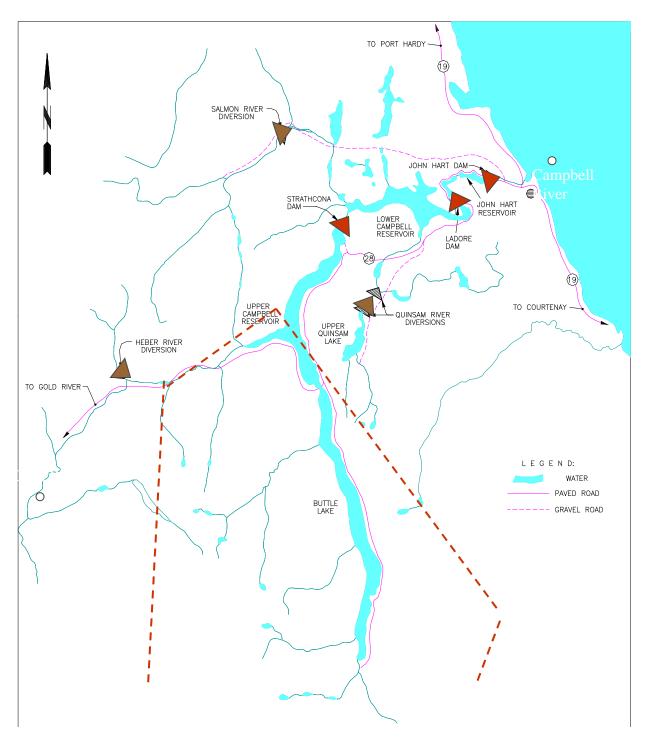
OUTLINE - Campbell River WUP Case Study

- The Watershed & Facilities
- The Multi-Stakeholder Process
- Structured Decision Making Tasks:
 - Defining Objectives and Performance Measures
 - Developing Alternatives
 - Evaluating Trade-offs
- Lessons Learned

Campbell River Watershed

Campbell River Watershed

1,500 square kms


3 Main Dams & Reservoirs

3 River Diversions

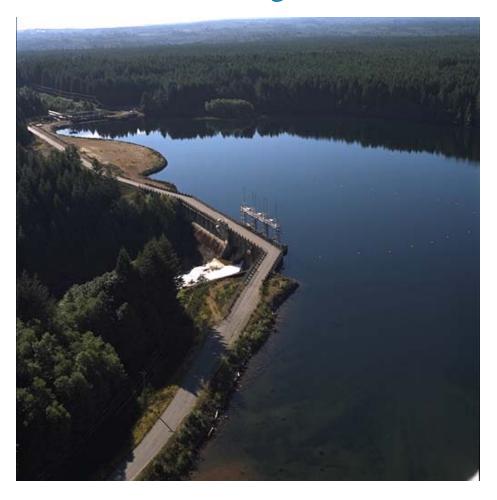
Annual Inflows = 100 cms/days

HUGE Hydrologic variability

Dozens of formal recreation sites

Strathcona Dam (1958)

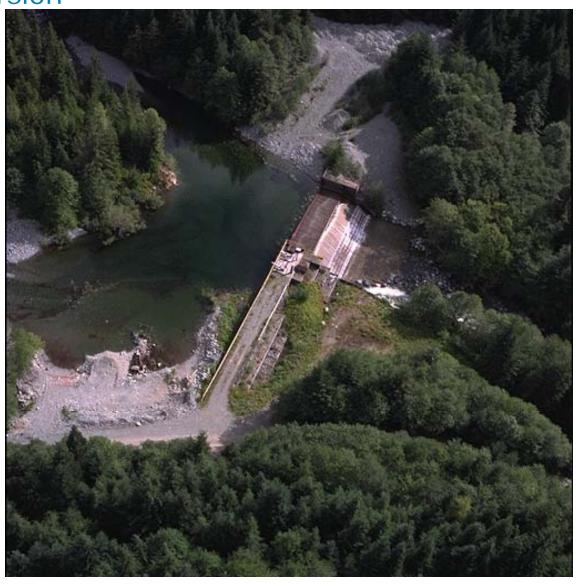
- 500 metre-long dam
- 6,700 hectare reservoir
- 1 Million m³ storage


- High recreation use
- Fish / wildlife use

John Hart Dam (1947)

• 750 metre long dam

- Significant canyon / mainstem habitat
- Community water supply



return

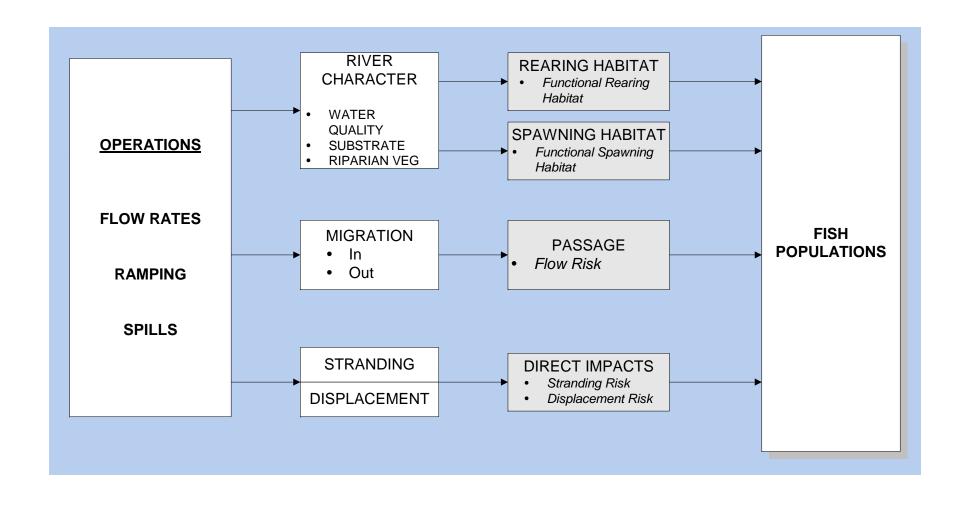
Heber River Diversion

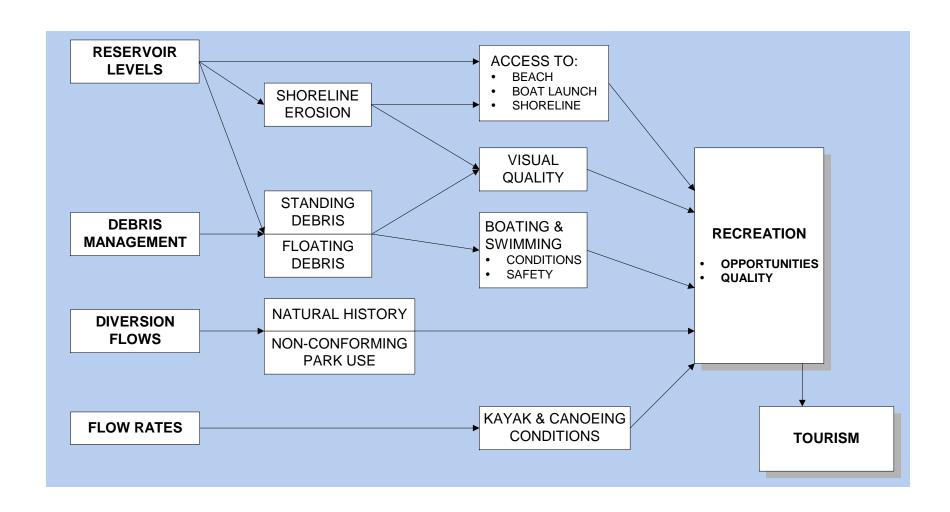
- Inter-basin diversion, First Nations rights
- Relatively low volume, yet high financial value
- Heber River steelhead under a recovery plan

Campbell River Watershed - Summary Context

- Hydropower Facilities on Vancouver Island with capacity of ~ 250 MW (52%)
- Multiple salmonid species including world-famous Chinook salmon runs and endangered steelhead runs
- Facilities within B.C.'s oldest Provincial Park significant recreation use area
- First Nations resource claims under negotiation; particular controversy over inter-basin water transfers

The Multi-Stakeholder Process


- Planning Period = 3 years
 - 20 Consultative Committee meetings
 - Dozens of Technical Committee meetings
 - Fish, Wildlife, Recreation, First Nations
- Participants:
 - BC Hydro (Crown Corporation)
 - Federal Government (DFO)
 - Provincial Government (MOE)
 - Local Government
 - First Nations
 - Local Business, Residents


Screening of Issues

- Initial "Issues List" developed through:
 - Public open houses
 - Past technical planning efforts
 - Initial Committee brainstorming
- Scope control → clarified what was on the planning table
- Organization with "means-ends" or influence diagrams

Influence Diagrams

Influence Diagrams

Using Influence Diagrams

- Influence diagrams useful for:
 - Building a common understanding of how things work (impact mechanisms) and what is on the table (scope control)
 - Linking operations (practical alternatives) with endpoints of interest (objectives)
 - Framing the technical tasks:
 - Impact hypotheses
 - Information sources and requirements
 - Key uncertainties

Recreation

 Enhance and protect the quality of recreation; increase the quantity of recreation and tourism opportunities

Object Flooding and Erosion

Minimize adverse effects of flooding and high water levels on private and public property and personal safety

Fish

Direction of preference

Maximize the abundance and diversity of indigenous fish populations

Wildlife

Protect and enhance the quantity and quality of wildlife habitat

Water Quality and Supply

 Protect and maintain drinking water quality, and maximize the availability of drinking water supply

Heritage and Culture

Protect heritage values and enhance opportunities for cultural activities

Power / Financial

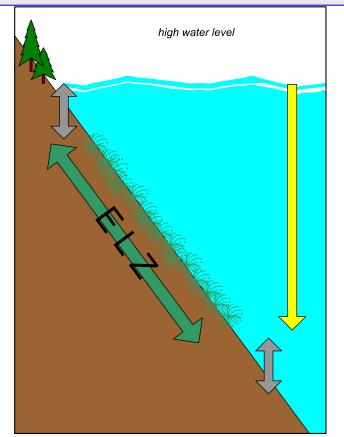
- Maximize the value of power generation to BC Hydro, Vancouver Island, the District of Campbell River and the Province
- Minimize greenhouse gas emissions

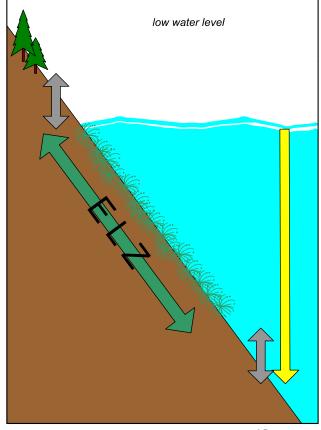
Setting Objectives

- Setting objectives may have been the single most important step
 - Provided a tangible means of facilitating an "interestbased" vs. "position-based" process
 - Validation → <u>all</u> interests were treated equally
 - Bounded the process

Developing Performance Measures

- Performance measures are specific metrics for comparing the predicted consequences or impacts of the alternatives on the objectives.
- Calculated in their "Natural Units"



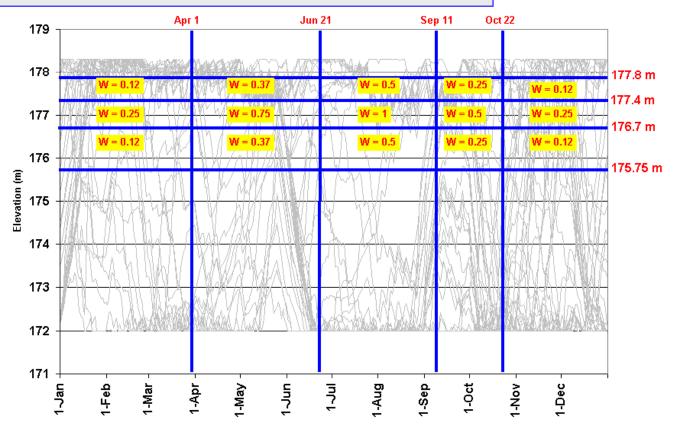

Example 1: Effective Littoral Zone

Objective: Reservoir Fish

Measure of overall fish productivity (abundance)

Units = hectares / year

© Compass Resource Management Ltd



Example 2 – Weighted User Days

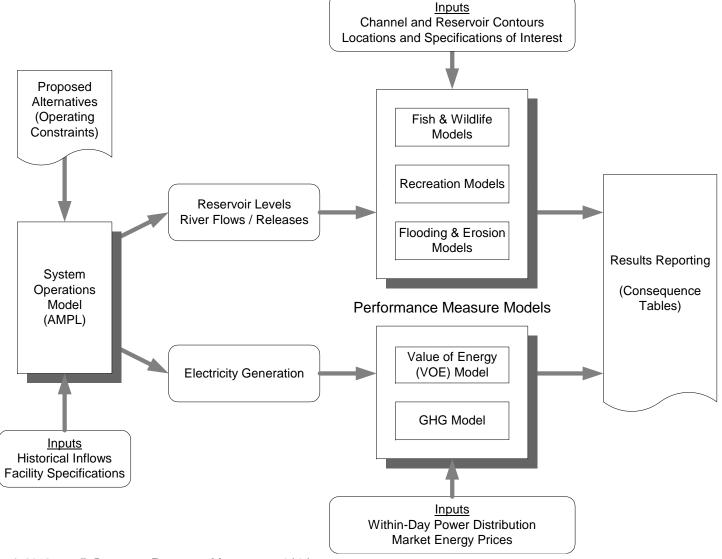
Objective: Reservoir Recreation

Measure of quality and opportunity for recreation

Units = weighted user days

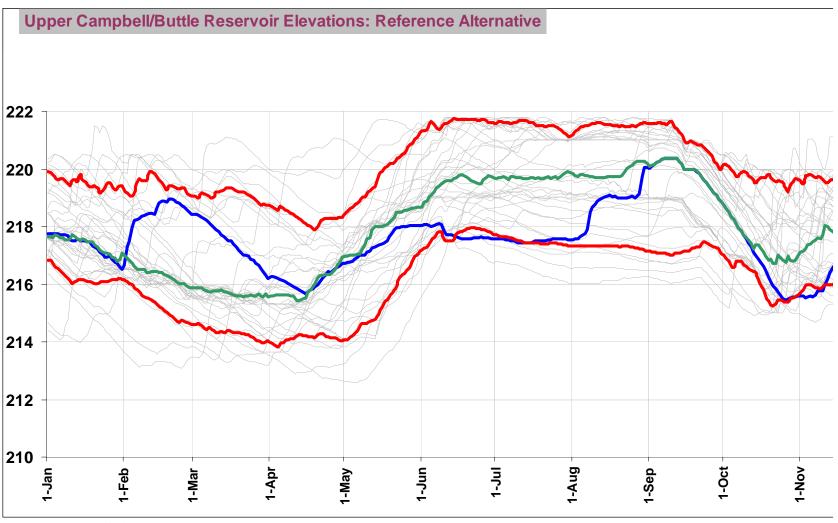
Summary: Objectives & Performance Measures

Objectives	Performance Measures
Recreation	User Days (weighted by season & elevation)
Erosion	Erosion Days (weighted by elevation)
Flooding	Flood Days (weighted by flow level)
Fish	% Available Habitat, Risk Indexes, Littoral Zone
Wildlife	Habitat Suitability Rating
Water Supply	Water Quality Impact Rating
F.N. Heritage	Consistency Rating
Financial	Annual Revenues M\$ / Year

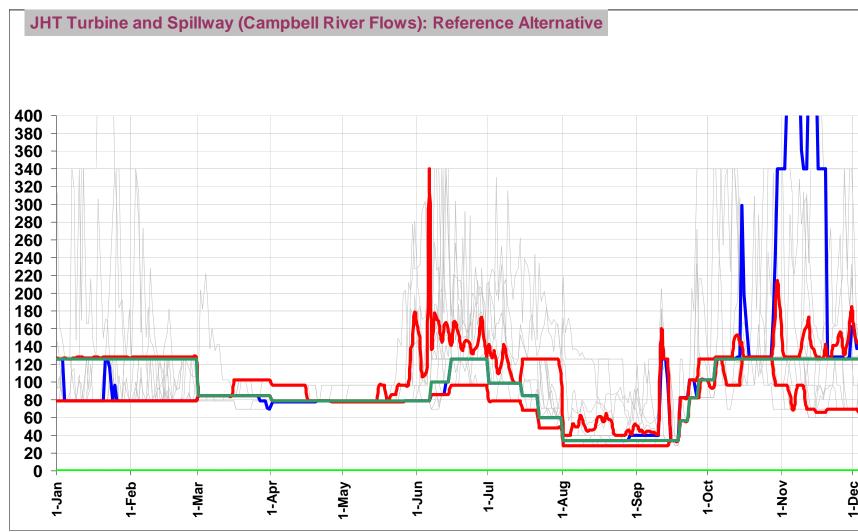

Developing Alternatives

- Started with "Bookend" Alternatives:
 - Stable reservoirs
 - Fish-friendly river flows
 - Maximize power generation
- Multiple iterative rounds of analysis and refinement
 - Sub-committees used to generate alternatives
 - Continual refinement of analytical methods
 - Simplified decision to the fundamental trade-offs

Strategy Table


U.C. Reservoir Options	L.C. Reservoir Options	Lower Campbell River Options	Canyon Flow Options	Heber / Crest Diversion Options	Salmon Diversion Options	Quinsam Diversion Options
No constraints	No constraints	No constraints	No constraints	No constraints	No constraints	No constraints
Constraints	Constraints	Constraints	CONSTIAINTS	Constraints	Constraints	Constraints
Min Level	Min Level	Min Flow	No Spills	No Flow	No Flow	No Flow
Max Level	Max Level	Max Flow	Min Flow	Min Flow	Min Flow	Min Flow
Stable Seasons	Stable Seasons	Ramping	Max Flow	Max Flow	Max Flow	Max Flow
Drawdown/ Fill Rates	Drawdown/ Fill Rates			Ramping	Ramping	Ramping

Modelling Overview



System Hydrology: Strathcona Reservoir

System Hydrology: Campbell River

Summary Consequence Table

				Altern	atives		
Objective	Attribute	Ε	F	G	Н	ı	Ĺ
Upper Campbell / Buttle Lake							
Erosion - Days / Year	weighted days (220 and 221 m)	37	13	4	3	3	3
Recreation - Days / Year	weighted days (217.5, 218.5, 200m by seaso	43	40	106	158	158	158
Effecti∨e Littoral Zone	hectares	91	107	93	214	215	220
Lower Campbell / McIvor / Fry							
Erosion - Days / Year	weighted days (177.4 and 178.3 m)	3	27	13	0	0	0
Recreation - Days / Year	weighted days (175.75 - 177.8 by season)	115	43	83	167	170	167
Spawning Habitat - Cutthroat	% Available Habitat	78	18	95	79	79	78
Spawning Habitat - Rainbow	% Available Habitat	26	3	49	49	47	50
Campbell River							
Flooding - Total Days	weighted days (300, 453, 530 cms)	34	48	24	59	59	59
Recreation - Days / Year	weighted days (28 cms - 80 cms)	66	83	51	81	79	81
Total Spill Days - All Species	days (Q>340cms, Sept 22 - April 15)	118	214	102	176	177	176
Spawning Habitat - All Species	% successful redds (Chum as indicator)	55	89	78	59	59	59
Rearing Habitat - All Species	"Average" risk index (scale 0 - 1)	0.53	0.48	0.53	0.50	0.49	0.49
Salmon River							
Canoe Route - Days / Year	days (Q<6cms, April 1 - Oct 22)	162	167	153	204	183	204
All Habitat - All Species	"Average" risk index (scale 0 - 1)	0.54	0.47	0.44	0.48	0.47	0.47
System-Wide							
Power / Financial	Annual Revenue M\$/Year	68.5	64.6	68.6	65.1	65.3	64.1

Highlighting Tradeoffs

		Alternatives					
Objective	Attribute	E	F	G	Н	l	J
Upper Campbell / Buttle Lake							
Erosion - Days / Year	weighted days (220 and 221 m)	37	13	4	3	3	3
Recreation - Days / Year	weighted days (217.5, 218.5, 200m by season)	43	40	106	158	158	158
Effective Littoral Zone	hectares	91	107	93	214	215	220
Lower Campbell / McIvor / Fry							
Erosion - Days / Year	weighted days (177.4 and 178.3 m)	3	27	13	0	0	0
Recreation - Days / Year	weighted days (175.75 - 177.8 by season)	115	43	83	167	170	167
Spawning Habitat - Cutthroat	% Available Habitat	78	18	95	79	79	78
Spawning Habitat - Rainbow	% Available Habitat	26	3	49	49	47	50
Campbell River							
Flooding - Total Days	weighted days (300, 453, 530 cms)	34	48	24	59	59	59
Recreation - Days / Year	weighted days (28 cms - 80 cms)	66	83	51	81	79	81
Total Spill Days - All Species	days (Q>340cms, Sept 22 - April 15)	118	214	102	176	177	176
Spawning Habitat - All Specie	s % successful redds (Chum as indicator)	55	89	78	59	59	59
Rearing Habitat - All Species	"Average" risk index (scale 0 - 1)	0.53	0.48	0.53	0.50	0.49	0.49
Salmon River							
Canoe Route - Days / Year	days (Q<6cms, April 1 - Oct 22)	162	167	153	204	183	204
All Habitat - All Species	"Average" risk index (scale 0 - 1)	0.54	0.47	0.44	0.48	0.47	0.47
System-Wide							
Power / Financial	Annual Revenue M\$/Year	68.5	64.6	68.6	65.1	65.3	64.1

28

Exploring Trade-offs

Approach:

- Explicitly asked for people's preferences
- Required that people's choices are based on an understanding of the trade-offs
- Explored and discussed the <u>uncertainties</u> in all results
- Used <u>structured methods</u> designed to improve quality of individual judgments and quality of group dialogue

Two basic ways to explore trade-offs and preferences:

"Rank the alternatives Top Down (holistically) in order of preference"

"How important is a 15% gain in fish habitat relative to a loss of 25 quality recreation days?"

Bottom Up (analytically)

		Alternatives					
Objective	Attribute	E	F	G	Н	- 1	J
Upper Campbell / Buttle Lake							
Erosion - Days / Year	weighted days (220 and 221 m)	37	13	4	3	3	3
Recreation - Days / Year	weighted days (217.5, 218.5, 200m by seaso	43	40	106	158	158	158
Effective Littoral Zone	hectares	91	107	93	214	215	220
Lower Campbell / McIvor / Fry							
Erosion - Days / Year	weighted days (177.4 and 178.3 m)	3	27	13	0	0	0
Recreation - Days / Year	weighted days (175.75 - 177.8 by season)	115	43	83	167	170	167
Spawning Habitat - Cutthroat	% Available Habitat	78	18	95	79	79	78
Spawning Habitat - Rainbow	% Available Habitat	26	3	49	49	47	50
ampbell River							
Flooding - Total Days	weighted days (300, 453, 530 cms)	34	48	24	59	59	59
Recreation - Days / Year	weighted days (28 cms - 90 cms)	66	83	51	81	79	81
Total Spill Days - All Species	days (Q>340cms, Sept 22 - April 15)	118	214	102	176	177	176
Spawning Habitat - All Species	% successful redds (Chum as indicator)	55	89	78	59	59	59
Rearing Habitat - All Species	"Average" risk index (scale 0 - 1)	0.53	0.48	0.53	0.50	0.49	0.49
Salmon River	-						
Canoe Route - Days / Year	days (Q<6cms, April 1 - Oct 22)	162	167	153	204	183	204
All Habitat - All Species	"Average" risk index (scale 0 - 1)	0.54	0.47	0.44	0.48	0.47	0.47
System-Wide	All Habitat - All Species "Average" risk index (scale 0 - 1)						
Power / Financial	Annual Revenue M\$/Year	68.5	64.6	68.6	65.1	65.3	64.1

Exploring Trade-offs

- Two day workshop
 - Review objectives and performance measures
 - Review consequence table
 - Discuss uncertainties, intangibles, and key trade-offs
 - Complete questionnaires for each method
 - **☀** Method 1: Direct Ranking
 - Rank and score the alternatives based on review of the consequence table
 - * Method 2: Swing Weighting
 - Rank and score the Performance Measure results
 - Calculate scores and ranks for alternatives
 - Review individual / group results
 - Develop next steps

Method 1: Direct Ranking

INSTRUCTIONS

STEP 1

Rank the Alternatives with 1 being your most preferred alternative. Ties are OK.

STEP 2

- A. Assign 100 points to the #1 ranked alternative.
- B. Then, assign points to the other Alternatives to reflect their importance relative to the #1 ranked alternative.

EXERCISE

Alternative Name	Rank	Points (from 0 - 100)
Е	4	50
F	2	80
G	1	100
Н	3	70
I	5	40
J	6	10

Method 2: Swing Weighting

INSTRUCTIONS

For each table:

- A. Rank the measures in terms of their relative importance, with a rank = 1 being your most important measure. Ties are okay.
- B. Assign 100 points to the #1 ranked measure.
- C. Assign points to the other measures to reflect their importance relative to the #1 ranked measure.

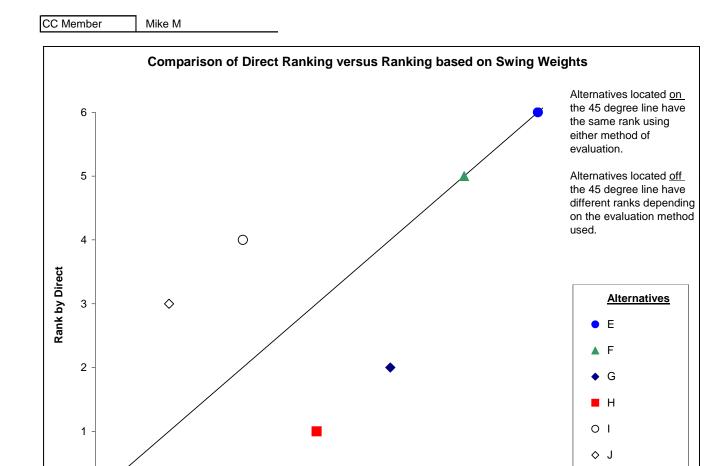

Remember to assign points based on how important it is to swing the measure <u>from its worst to its best</u>. If the range from worst to best is very small or very large, that should affect the importance you give it.

Table 1						
Location	Performance Measure	Units	Worst Case	Best Case	Rank	Points (0 to 100)
Upper Campbell Lake	Erosion - Days / Year	weighted days (220 and 221 m)	37	3	1	100
	Recreation - Days / Ye	eweighted days (217.5, 218.5, 200m by	40	158	1	100
	Effective Littoral Zone	hectares	91	220	2	50

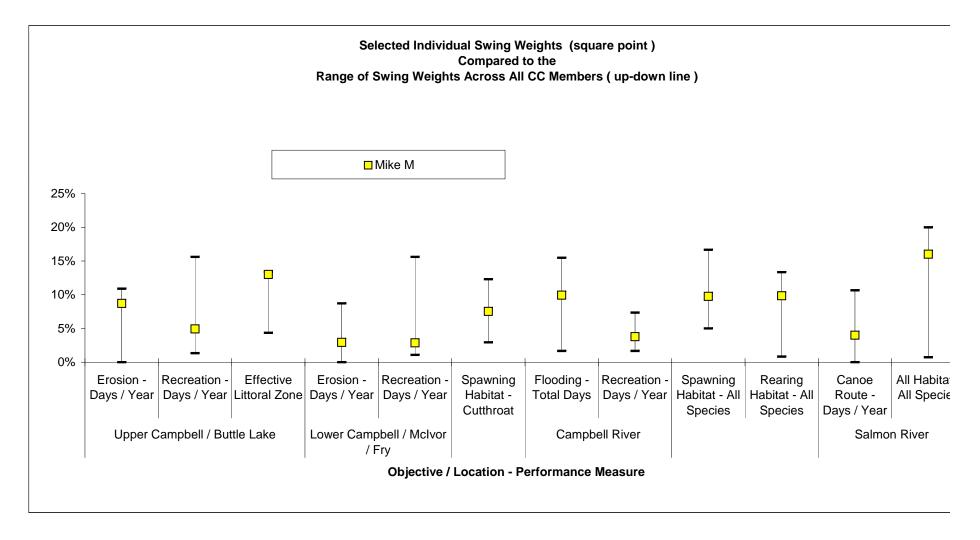
Table 3					
Location	Performance Units Measure	Worst Case	Best Case	Rank	Points (from 0 to
Campbell River	Flooding - Total Days weighted days (300, 453, 530 cms)	59	24	1	100
	Recreation - Days / Yeaweighted days (28 cms - 80 cms)	51	83	3	50
	Spawning Habitat - All 1% successful redds (Chum as indicator	55	89	2	70
	Rearing Habitat - All Sp "Average" risk index (scale 0 - 1)	0.53	0.48	4	10

Uncovering Bias and Anchoring

2

3

Rank by Swing Weights


5

6

---- 45 degree line

Informing the Negotiations

Working Toward Consensus

	Rank of Alternative	o by Otar	CHOIGE 6				
				Altern	atives		
Stakeholder	Weighting/ Ranking Method	E	F	G	Н	I	J
1	Direct	6	5	2	1	4	3
	Swing	6	5	4	3	2	1
2	Direct	6	5	1	3	4	2
	Swing	6	5	4	3	2	1
3	Direct	6	3	5	1	2	4
	Swing	6	5	2	4	1	3
4	Direct	5	6	4	1	3	2
T	Swing	5	6	4	1	3	2
5	Direct	2	3	1	4	4	4
3	Swing	5	6	4	2	3	1
6	Direct	3	4	1	2	4	6
U	Swing	5	6	1	2	3	4
7	Direct	6	2	1	3	3	3
	Swing	6	5	4	3	2	1
8	Direct	2	3	1	4	4	4
0	Swing	6	5	4	3	2	1
0	Direct	2	6	1	5	4	3
9	Swing	5	6	1	3	2	4
10	Direct	3	2	1	4	5	6
10	Swing	6	5	1	3	2	4
11	Direct	5	6	4	1	2	3
11	Swing	5	6	4	1	3	2
40	Direct	6	3	2	4	5	1
12	Swing	6	5	4	3	2	1
40	Direct	6	5	4	3	2	1
13	Swing	6	5	4	2	3	1
	Direct	2	5	1	4	3	6
14	Swing	2	6	1	4	3	5
	Direct	2	3	1	4	5	6
15	Swing	5	6	4	1	3	2

Working Toward Consensus

- Next Steps Included
 - Refining the operating alternatives for the mainstem river and diversions
 - Designing "physical works" or non-operating projects
 - Designing and prioritizing monitoring programs

Working Toward Consensus

Final **Operating Alternatives**

Physical Works

Monitoring **Programs**

						Alternatives		
Location	Performance Measures (1)	Units		Significant Difference	REF	R15 Heber	815 Heber	
Upper Can	npbell / Buttle Lake							
	Erosion - Days / Year	weighted days	less	10%	16	4	4	Relative to RE
	Recreation - Days / Year	weighted days	more	10%	50	82	85	Better
	Effective Littoral Zone	hectares	more	10%	80	94	92	Neutral
	Spauring Habitet - Cutthroat	% Available Habitat	mere	10%		10	10	Worse
	Spawning Habitat - Rainbow	% Available Habitat	more	10%	3	5	- 6	
Lower Can	npbell / McIvor / Fry							
	Erosion - Days / Year	weighted days (2)	less	10%	11	11	10	
	Recreation - Days / Year	weighted days (2)	more	10%	102	96	98	
	Elevation Variability	Coefficient of Variation	less	10%	0.08	0.16	0.09	
	Effective Littoral Zone	hectares	more	10%	86	82	83	
	Spawning Habitat - Cutthroat	% Available Habitat	more	10%	4	3	2	
	Spawning Habitat - Rainbow	% Available Habitat	mtre	10%	25	31	15 (22)	
Campbell F	River							
	Flooding - Total Days	weighted days	less	10%	27	18	20	
	Recreation - Days / Year	weighted days	more	10%	79	60	60	
	Total Spill Days - All Species	total days	less	10%	160	111	114	
	Spawning Habitat - All Species	% successful redds (Churn)	more	10%	69	71	69	
	Reering Hebitat - All Species	"Average" risk index (0 - 1)	less	10%	0.54	0.59	0.58	
	Elk Carryon	FTC judgement	more	0%	0	++++	++++	
Salmon Riv	ver							
	Cance Route Safety	Flow Rating	more		0	0	0	
	All Habitat - All Species	"Average" risk index (0 - 1)	less	10%	0.54	0.46	0.46	
	Fish Screen Performance	Fishing Efficiency, Fish Condition	more		0	0	0	
System-Wi	de							
	Power / Financial	Annual Revenue MS/Year	more	156	66.9	68.2	68.3	
		Cost: Salmon Fish Screen (M \$ / Year)	less	1%	0	0	0	
		Cost: All Other Physical Works (M \$ / Year)	less	1%	-0.10	-0.10	-0.10	
		Cost: Monitoring (M \$ / Year)	less	1%	-0.70	-0.70	-0.70	
	GHG	Equivalent Mtonnes CO2/Year	less	1%	-600	-614	-616	
	Diversions	Status of Heber Diversion (3)			Status	Heber	Heber	

	Physical Works Proposal	Project Objective	Water Use Plan Rationale	Duratisn (years)	Total Coat (8K)	Levelized Annual Cost (1) (BOyean)	Operational Linkage	Effectiveness
1	Seyward Cance Route, Portage & Signage	To reduce public safety risk caused by diverted flows along a public cance route.	In Neu of constrained diversion flows (e.g., At I I, June 2002, 0 cms summer flow & 6 cms shoulder season flows)	-1	\$10	\$1	Υ	1
2	Erosion Control Works, Salmon Diversion	To stop enosion and reduce public safetyrisks along the Sayward Cance Route (including identified problem location near Camp 5).	In lieu of constrained diversion flows (e.g., At H. June 2002, 0 cms summer flow & 6 cms shoulder season flows)	- 6	\$150	\$12	Υ	1
3	Erosion Control Works, Upper Campbell Reservoir	To eliminate future erosion problems at problem sales (Codar Creek Subdivision, Strathcona Park Subdivision and Strathcona Park Lodge).	In lieu of lower reservoir elevations that would further reduce the rate of ecosion at these problem sites (e.g., At A, Dec 2001, no violations above 200.5 m)	2 + ongoing maint	\$5,600	\$454	Υ	1
4	Recreation Facility Improvements, Upper Campbell Reservoir	subdivision and Stathcone Park Lodge) 2001, no visiations above 2005 m) In the or finise increation facilities operational under a la feet range of elevations 2002, UC personal operating range of 216 m 2002, UC personal operating range of 216 m		3	\$250	\$20	Υ	1
5	Recreation Facility Improvements, Lower Campbel Reservoir	To make recreation facilities operational under a wider range of elevations.	In feu of more constrained and stable reservoir elevations (e.g., At H. June 2002, UC operating in range 176.5 m - 177.5 m more often)	3	\$250	\$20	Υ	1
6	Revegetation, Upper Campbell Reservoir	To revegetate reservoir perimeter sites thereby improving visual aesthetics and terrestrial habitat.	Proposed operating regime S is approximately 1 metre lower on average.	10	\$475	\$31	Υ	3
7	Salmon Fish Sceen Upgrade	To re-design and re-construct the fish screen for improved fishing efficiency and fish condition.	Would allow for an increase in the maximum allowable diversion flew during the April 1 to December 31 period from 15 cms to 30 cms. The increased diversion would generate approximately \$500K on an average annual basis.	1	\$2,100	\$195	Υ	3
8	Miller Creek	To create protected spawning habitat and eliminate redd stranding problems associated with operation of the Quinsam diversion / LC reservoir.	In lieu of minimum Quinsam diversion flow and constrained higher reservoir elevations.	1	\$200	\$17	7	3
						\$740		

	Monit	Objectives Monthstring Plan (Outa Gap Addressed) Conserves				Objectives Gap Addressed) Comments						TetalCost	Levelbed Annual Cost (BRiyear)	Influence on Decisions (1-6)	Leaming (15)	Transferibility					
	Digital Elevatio Campbell Rese	n Model, Lower D	Develop correlation between submerg	god hazar	do DE	M would aid lead	have m to a new	ultiple o or imp	ther use roved re	ecreati	dy on 1	\$50	\$12	-1	1	8					
	Digital Flowation	Model Linner II	Sevelop correlation between submerc	and heavy		24 weeks	have r	ultiple c	ther use	is 502	ey .										
Monitor	Markata Mar		Phiadina		Comments Span				(years)	Total Cost (\$H)	Levelized Annual Cost (\$HOyear)	Influence on Decisions (1-5)	Learning (1-5)	Transferability (1.5)							
Monitoring Plan	Chy (Data Ga)	ectives o Addressed)	Comments	Ouration (years)	Total Cost (SR)	Levelland Annual C (SKIyear)	Influence on Decisi (1-5)	Learning (1-8)	Transferability (1 - 5)		\$650	\$130	1	2	5						
To investigate the primary physical and biological primary it secondary productively determinants o lobited quality in the Campbell System rivers.		This studyworks in conjunction with other studies by providing base diagnostic information.	5	\$440	\$88	1	3	3		\$385	\$77	1	3	3	l						
striat Flow Relationships	Develop and validate thin steam flow and fish in Diversion stream trans- stream passage barrier validation	e correlation between stotat in streams; 1) ct analysis; 2) Diversion s; 3) Comptell River R2D	Study would lead to new or improved habitat PNs for all river systems.	3	\$300	\$60	1	,	3	-		\$87	3 (2)	3	3	ı					
sh Response to Rearing Habitat	Develop correlation bet biological response in f	ween rearing habitat and lah.	Study may/lead to newfish behaviour or population-based PM.	2	\$165	\$33	1	3	1		\$435	\$430	8400	P455	8400		307	3 (2)	3	,	ı
ysical modeling of Ramping and I pping	Develop correlation bet tripping events on spaw		Study may/lead to newnamping protocol	s. 1	\$70	\$15	2	2	2	-		\$294				J					
sh Response to Load Factoring - taled Down Approach	Develop comolation but rates) and spawning be	ween load factoring (ramp havious/success.	Study would validate habitat based PMs and could lead to newload factoring regimes. (Study may have power generation benefits to offset the costs)	2	\$100	\$20	2	3	1				,								
mits to Fish Production - imsem River	Conduct population mo	nitoring fish-counting feno	Study would lead to new, direct objective based PMs.		\$220	\$61	1	3	3												
mits to Fish Production - Heber ver	Conduct population mo	nitoring snorkel swims.	Study-would lead to new, direct objective based PMs. (Current stock assessment covered by Provincial funding - uncertain future)		\$43	90	1	3	3												
mits to Fish Production - Salmon ver	Conduct population mo	nitoting shokel swims.	Study would lead to new, direct objective based PMs. (Current stock assessment covered by Provincial funding - uncertain future)		\$122	\$24	1	3	3												
mits to Fish Production - Elik snyon	Conduct population mo (rotary screw traps, vide	nitoring smolt abundance to surveilance).	Study would lead to new, direct objective based PMs.	5	\$513	\$103	1	3	3												

WUP Guidelines:

"Each process will strive for, but not require, consensus on all aspects of the WUP"

"Consensus is defined as a decision which participants can accept, without having to agree to all details"

Endorse = Strong support

Accept = Support with reservations

Block = Do not support

(Minimum needs not met)

Consensus = No Blocks

Formal Statements of Acceptance

	REF	R15	S15
Endorse		Rik, Brenda, Steve, Paul W, Cheryl	Ian, Gavin, Paul A, Brian, Don, Charlie, Roger
Accept		Ian, Gavin, Paul A, Brian, Jamie, Don, Charlie, Phil, Bert, Roger	Rik, Brenda, Steve, Phil, Paul W, Bert, Cheryl
Block	Ian, Gavin, Paul A, Brian, Rik, Jamie, Don, Brenda, Steve, Charlie, Phil, Bert, Cheryl, Craig, Roger		Jamie
Abstain	Paul W	Craig	Craig

Final Outcome

Upper Campbell	+ reduced shoreline erosion	
Reservoir	+ improved recreation	
	+ improved fish productivity	
Lower Campbell	o no change in erosion	
Reservoir	+ improved recreation	
	+ improved fish productivity	
Campbell River	+ reduced flooding risk	
	- reduced recreation quality	
	+ improved fish productivity	
System-wide	+ increased operating revenues	
	(offset by investments in monitoring and works)	
	+ decommissioning Heber diversion	

Lessons Learned

- A structured process can help stakeholders focus their dialogue on interests rather than positions
- Success depends on the rigorous, defensible and transparent treatment of both facts and values
- Collaborative development and exploration of alternatives enables participants to make trade-offs and find common ground
- Authentic commitment to monitoring programs and adaptive management can be the key to reaching group consensus
- It is possible to engage multi-stakeholder committees in technically rigorous water management processes

THANKS!

